Abstract
Stimulated Brillouin scattering (SBS) is a third-order nonlinear process that involves the interaction of two light fields and an acoustic wave in a medium. It has been exploited for applications of optical communication, sensing, and signal processing. This effect, originally demonstrated in long optical fibers, has recently been realized in silicon waveguides on a chip-scale integrated platform. However, due to the weak per-unit-length SBS gain, the length of the silicon waveguides is usually several centimeters, which prevents device miniaturization for high-density integration. Here, we engineer a phoxonic crystal waveguide structure to achieve significantly enhanced SBS gain in the entire C band, by taking advantage of its simultaneous confinement of slow propagating optical and acoustic waves. The resulting SBS gain coefficient is greater than 3 × 104 W-1 m-1 in the wavelength range of 1520-1565 nm with the highest value beyond 106 W-1 m-1, which is at least an order of magnitude higher than the existing demonstrations. This giant enhancement of SBS gain enables ultracompact and high-performance SBS-based integrated optoelectronic devices such as Brillouin lasers, amplifiers, and signal processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.