Abstract

Molecular spintronics is a new and emergent sub-area of spintronics that has the potential use in future information storage, magnetic sensing and quantum computing. We investigate the spin transport properties of a single benzene molecule connected to zigzag graphene nanoribbons (ZGNRs) by using a self-consistent ab initio approach which combines the non-equilibrium Green's function (NEGF) formalism with density functional theory (DFT). The spin-resolved current-voltage characteristics of the single benzene molecule at finite biases are different while the left and right zigzag graphene electrodes with the parallel (P) and anti-parallel (AP) magnetism configurations. The perfect (100%) spin polarization in a large bias region can be realized with both P and AP magnetism configuration. However, the spin-resolved rectifications are only found with AP magnetism configuration. More importantly, both of the α-spin and β-spin currents would drop remarkably when one ZGNR electrode is twisted. Especially the α-spin currents with P magnetism configuration will decrease by up to 8 orders of magnitude when the twisted angle reaches 90°. The above results demonstrate that this junction holds promise in the design of a high-performance multifunctional single-molecule spintronic device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.