Abstract
Gigantic colloidal single crystals (2–6 mm) are formed for fluorine-containing polymer spheres (120–210 nm in diameter) in exhaustively deionized aqueous suspensions. The spheres used are poly(tetrafluoroethylene) (PTFEA and PTFEB), copolymer of tetrafluoroethylene and perfluorovinylether (PFA) and copolymer of tetrafluoroethylene and perfluoropropylene (PTP). The phase diagrams of these spheres are obtained in the deionized suspensions and also in the presence of sodium chloride for PFA. The critical sphere concentrations of crystal melting (φ c) for these spheres are around 0.0006 in volume fraction, which are close to, but slightly larger than, those of monodispersed polystyrene spheres (φ c ≈ 0.00015) and colloidal silica spheres(φ c = 0.0002–0.0004) reported previously. The crystals are largest when the sphere concentrations are a bit higher than the φ c value and their size decreases as the sphere concentration increases. Reflection spectra are taken in sedimentation equilibrium as a function of the height from the bottom of the suspension. The static elastic modulus is estimated to be 10.8 and 28.7 Pa for PTFEA and PTP spheres at the sphere concentrations 0.00325 and 0.00322 in volume fraction, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.