Abstract
We develop a theory to probe the effect of nonequilibrium fluctuation-induced forces on the size of a polymer confined between two horizontal, thermally conductive plates subject to a constant temperature gradient, ∇ T. We assume that (a) the solvent is good and (b) the distance between the plates is large so that in the absence of a thermal gradient the polymer is a coil, whose size scales with the number of monomers as Nν, with ν ≈ 0.6. We find that above a critical temperature gradient, ∇ Tc ≈ N-5/4, a favorable attractive monomer-monomer interaction due to the giant Casimir force (GCF) overcomes the chain conformational entropy, resulting in a coil-globule transition. Our predictions can be verified using light-scattering experiments with polymers, such as polystyrene or polyisoprene in organic solvents in which the GCF is attractive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.