Abstract

High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph (STIS) are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051, and NGC 3516.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call