Abstract
Euplokamis dunlapae responds to anterior stimulation by reversing the beat direction of its comb plate cilia and swimming rapidly backwards. It responds to posterior stimulation by swimming forwards at an accelerated rate. Video playback and laser monitoring were used to analyze changes in the pattern of ciliary beating, while electrical activity was recorded extracellularly. Escape responses occur with latencies of less than 150 ms and involve greatly increased ciliary beat frequencies. Giant axons run longitudinally along each of the eight comb rows, as shown by optical and electron microscopy. They form chains of overlapping neurons, with diameters of about 12 μm in life, and conducting at over 50 cm · s-1 as recorded with an extracellular electrode placed directly over the chain. The giant neurons are synaptically linked with smaller neurites of the general ectodermal nerve plexus, with each other, and with the ciliated cells of the comb plates. They appear to constitute a single system mediating rapid conduction of signals in either direction, but a full analysis was not attempted for lack of sufficient material. Electro-physiological examination of two other ctenophores (Pleurobrachia and Beroe) gives no indication of rapid conduction pathways, and these forms probably lack giant axons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.