Abstract

We study the decay dynamics of a two-level giant atom that is coupled to a waveguide with time-dependent coupling strengths. In the non-Markovian regime where the retardation effect cannot be ignored, we show that the dynamics of the atom depends on the atom-waveguide coupling strengths at an earlier time. This allows one to tailor the decay dynamics of the giant atom and even realize a stationary population revival with appropriate coupling modulations. Moreover, we demonstrate the possibility of simulating the quantum Zeno and quantum anti-Zeno effects in the giant-atom model with periodic coupling quenches. These results have potential applications in quantum information processing and quantum network engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.