Abstract
Giant Gilbert damping anisotropy is identified as a signature of strong Rashba spin-orbit coupling in a two-dimensional antiferromagnet on a honeycomb lattice. The phenomenon originates in spin-orbit induced splitting of conduction electron subbands that strongly suppresses certain spin-flip processes. As a result, the spin-orbit interaction is shown to support an undamped non-equilibrium dynamical mode that corresponds to an ultrafast in-plane N\'eel vector precession and a constant perpendicular-to-the-plane magnetization. The phenomenon is illustrated on the basis of a two dimensional $s$-$d$ like model. Spin-orbit torques and conductivity are also computed microscopically for this model. Unlike Gilbert damping these quantities are shown to reveal only a weak anisotropy that is limited to the semiconductor regime corresponding to the Fermi energy staying in a close vicinity of antiferromagnetic gap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.