Abstract

Hydrostatic pressure represents an inexpensive and practical method of driving caloric effects in brittle magnetocaloric materials, which display first-order magnetostructural phase transitions whose large latent heats are traditionally accessed using applied magnetic fields. Here, moderate changes of hydrostatic pressure are used to drive giant and reversible inverse barocaloric effects near room temperature in the notoriously brittle magnetocaloric material MnCoGeB0.03 . The barocaloric effects compare favorably with those observed in barocaloric materials that are magnetic. The inevitable fragmentation provides a large surface for heat exchange with pressure-transmitting media, permitting good access to barocaloric effects in cooling devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.