Abstract

We report on rotating an optically trapped silica nanoparticle in vacuum by transferring spin angular momentum of light to the particle's mechanical angular momentum. At sufficiently low damping, realized at pressures below 10^{-5} mbar, we observe rotation frequencies of single 100nm particles exceeding 1GHz. We find that the steady-state rotation frequency scales linearly with the optical trapping power and inversely with pressure, consistent with theoretical considerations based on conservation of angular momentum. Rapidly changing the polarization of the trapping light allows us to extract the pressure-dependent response time of the particle's rotational degree of freedom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call