Abstract

BackgroundThe pentatricopeptide repeat (PPR) gene family, which contains multiple 35-amino acid repeats, constitutes one of the largest gene families in plants. PPR proteins function in organelles to target specific transcripts and are involved in plant development and growth. However, the function of PPR proteins in cotton is still unknown.ResultsIn this study, we characterized a PPR gene YELLOW-GREEN LEAF (GhYGL1d) that is required for cotton plastid development. The GhYGL1d gene has a DYW domain in C-terminal and is highly express in leaves, localized to the chloroplast fractions. GhYGL1d share high amino acid-sequence homology with AtECB2. In atecb2 mutant, overexpression of GhYGL1d rescued the seedling lethal phenotype and restored the editing of accD and ndhF transcripts. Silencing of GhYGL1d led to the reduction of chlorophyll and phenotypically yellow-green leaves in cotton. Compared with wild type, GhYGL1d-silenced cotton showed significant deformations of thylakoid structures. Furthermore, the transcription levels of plastid-encoded polymerase (PEP) and nuclear-encoded polymerase (NEP) dependent genes were decreased in GhYGL1d-silenced cotton.ConclusionsOur data indicate that GhYGL1d not only contributes to the editing of accD and ndhF genes, but also affects the expression of NEP- and PEP-dependent genes to regulate the development of thylakoids, and therefore regulates leaf variegation in cotton.

Highlights

  • The pentatricopeptide repeat (PPR) gene family, which contains multiple 35-amino acid repeats, constitutes one of the largest gene families in plants

  • In this study, using computational prediction followed by verification with a virus-induced gene silencing (VIGS) experiment, we identified a PPR-DYW family gene, GhYGL1d, which was essential for cotton leaf development

  • To identify all of the PPR-DYW proteins in G. hirsutum, we screened for all PPR proteins in the cotton genome database and a total of 1, 059 PPR proteins were identified (Fig. 1a)

Read more

Summary

Introduction

The pentatricopeptide repeat (PPR) gene family, which contains multiple 35-amino acid repeats, constitutes one of the largest gene families in plants. PPR proteins function in organelles to target specific transcripts and are involved in plant development and growth. Chloroplasts are specialized organelles in plants and an abundance of chloroplasts are found in the leaf, which is the primary location of photosynthesis and sugar manufacturing. The PPR protein family was one of the largest protein families in plants, which contained several repeating motifs consisting of 35 amino acids [11, 12]. The P subfamily of proteins contain only the P motif, while the PLS subfamily consists of degenerated P, L, and S motifs, where the S motif has 31 amino acids and L motif has 35 or 36 amino acids [15].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call