Abstract

A novel algorithm is presented to compute the convex hull of a point set in ℝ 3 using the graphics processing unit (GPU). By exploiting the relationship between the Voronoi diagram and the convex hull, the algorithm derives the approximation of the convex hull from the former. The other extreme vertices of the convex hull are then found by using a two-round checking in the digital and the continuous space successively. The algorithm does not need explicit locking or any other concurrency control mechanism, thus it can maximize the parallelism available on the modern GPU. The implementation using the CUDA programming model on NVIDIA GPUs is exact and efficient. The experiments show that it is up to an order of magnitude faster than other sequential convex hull implementations running on the CPU for inputs of millions of points. The works demonstrate that the GPU can be used to solve nontrivial computational geometry problems with significant performance benefit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.