Abstract

Ghrelin stimulates gastric motility in rats, mice and humans. Although ghrelin and the ghrelin receptor are known to be expressed in the guinea-pig gastrointestinal tract, the effects of ghrelin on gastric motility have not been examined. Aim of the present study was to clarify the motor-stimulating action of ghrelin in the guinea-pig stomach. Gastric motility was measured as intraluminal pressure changes using a balloon inserted in the stomach of urethane-anaesthetized guinea pigs. The effects of ghrelin on gastric muscle contraction and [(3)H]-efflux from [(3)H]-choline-loaded strips were investigated in vitro. Ghrelin (0.3-30 microg kg(-1), i.v.) increased gastric motility in a dose-dependent manner but des-acyl ghrelin was ineffective. The action of ghrelin was completely inhibited by hexamethonium and D-Lys(3)-growth-hormone releasing peptide-6. Atropine partially decreased the stimulatory action of ghrelin. In capsaicin-pretreated guinea pigs, the ghrelin-induced response was markedly decreased. Ghrelin (1 micromol L(-1)) did not affect [(3)H]-efflux in non-stimulated preparations but significantly decreased electrical field stimulation (EFS)-induced [(3)H]-efflux. L-Nitro arginine methylester (L-NAME) attenuated the inhibition of [(3)H]-efflux by ghrelin. Ghrelin did not cause any mechanical changes in gastric strips. Electrical field stimulation caused relaxation of gastric strips, which changed to atropine-sensitive contraction in the presence of L-NAME. Relaxation induced by EFS was slightly potentiated, but the EFS-induced contraction was not affected by ghrelin. Ghrelin stimulates gastric motility of the guinea pig through activation of capsaicin-sensitive vago-vagal reflex pathway including efferent cholinergic neurons. Peripheral ghrelin receptors on enteric nitrergic nerves might affect the ghrelin-induced gastric action by releasing nitric oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.