Abstract

Ghrelin (Ghrl) is an orexigenic peptide with potential roles in the modulation of anxiety- and depressive-like symptoms induced by bilateral olfactory bulbectomy (OB) in rodents. In the present work, we assessed whether intrahippocampal Ghrl could reverse OB-induced depressive-like and amnesic effects by regulating molecular mechanisms related to neuroplasticity. Adult female albino Swiss mice were divided into sham and OB groups, and infused with saline (S) or Ghrl 0.03 nmol/μl, 0.3 nmol/μl, or 3 nmol/μl into the hippocampus before exposition to open-field test (OFT) and tail suspension test (TST) or immediately after training in the object recognition test (ORT). After test phase in ORT, animals were euthanized and their hippocampi were dissected to study the expression of genes related to memory. The OB-S animals presented hyperlocomotion in OFT, increased immobility in TST and memory impairment compared to sham-S (p < 0.05), but acute intrahippocampal infusion of Ghrl 0.3 nmol/μl produced an improvement on these parameters in OB animals (p < 0.05). In addition, this dose of Ghrl reversed OB-induced low expression of NMDA1 and MAPK1 iso1 and up-regulated the expression of CaMKIIa iso1 and iso2, and MAPK1 iso2 (p < 0.05). These results extend the existing literature regarding OB-induced behavioral and neurochemical changes, and provide mechanisms that could underlie the antidepressant effect of Ghrl in this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.