Abstract

Excitotoxic degeneration of spinal cord motoneurons has been proposed as a pathogenic mechanism in amyotrophic lateral sclerosis (ALS). Recently, we have reported that ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHS-R) 1a, functions as a neuroprotective factor in various animal models of neurodegenerative diseases. In this study, the potential neuroprotective effects of ghrelin against chronic glutamate-induced cell death were studied by exposing organotypic spinal cord cultures (OSCC) to threohydroxyaspartate (THA), as a model of excitotoxic motoneuron degeneration. Ghrelin receptor was expressed on spinal cord motoneurons. Exposure of OSCC to THA for 3weeks resulted in a significant loss of motoneurons. However, THA-induced loss of motoneurons was significantly reduced by treatment of ghrelin. Exposure of OSCC to the receptor-specific antagonist D-Lys-3-GHRP-6 abolished the protective effect of ghrelin against THA. Treatment of spinal cord cultures with ghrelin caused rapid phosphorylation of extracellular signal-regulated kinase 1/2, Akt, and glycogen synthase kinase-3β (GSK-3β). The effect of ghrelin on motoneuron survival was blocked by the MEK inhibitor PD98059 and the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. Taken together, these findings indicate that ghrelin has neuroprotective effects against chronic glutamate toxicity by activating the MAPK and PI3K/Akt signaling pathways and suggest that administration of ghrelin may have the potential therapeutic value for the prevention of motoneuron degeneration in human ALS. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β in motoneurons contributes to the protective effect of ghrelin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.