Abstract

Acyl ghrelin, a novel brain-gut peptide, is an endogenous ligand for the growth hormone secretagogue receptor. Accumulated research data have shown that acyl ghrelin exercises a significant neuroprotective effect against cerebral ischemia/reperfusion (I/R) injury in animal models and in cultured neurons during the acute phase, usually, 1day after cerebral ischemia. The chronic effects of acyl ghrelin 1week after brain ischemia remain largely unknown. In this study, we explored the effects of acyl ghrelin on cultured organotypic brain slices and cortical neurons which were injured by oxygen-glucose deprivation/reperfusion(OGD/R) for 7days. The underlying molecular mechanisms were deciphered based on label-free proteomic analysis. Acyl ghrelin treatment promoted neurite (axons and dendrites) growth and alleviated the neuronal damage in both cultured brain slices and neurons. Proteomic analysis showed that cell division control protein 42 (Cdc42) mediates the effects of acyl ghrelin on neurite growth. Acyl ghrelin stimulated the expression of Cdc42 and neurite growth in cultured neurons comparing with OGD/R group. Inhibition of Cdc42 attenuated the effects of acyl ghrelin. These results suggest that acyl ghrelin promotes neurite growth during the later stage after OGD/R injury via Cdc42. Our study suggests that acyl ghrelin may be promising to restore the neuronal structure in the late phase after stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.