Abstract

Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), two subtypes of which have been identified and named GHS-R1a and GHS-R1b. Evidence has been provided that ghrelin and its receptors are expressed in the adrenal gland, and we have investigated the possible role of the ghrelin system in the functional regulation of the human adrenal cortex. Reverse transcription–polymerase chain reaction detected the expression of both subtypes of GHS-Rs exclusively in the zona glomerulosa (ZG). Ghrelin did not significantly affect either basal or agonist-stimulated aldosterone secretion from cultured ZG cells. In contrast, ghrelin raised proliferative activity and decreased apoptotic deletion rate of ZG cells, the maximal effective concentration being 10 −8 M. The growth effects of 10 −8 M ghrelin on cultured ZG cells were not affected by either the protein kinase (PK)A and PKC antagonists H-89 and calphostin-C or the mitogen-activated PK (MAPK) p38 antagonist SB-293580, but were abolished by both the tyrosine kinase (TK) and MAPK p42/p44 antagonists tyrphostin-23 (10 −5 M) and PD-98059 (10 −4 M), respectively. Ghrelin (10 −8 M) enhanced TK and MAPK p42/p44 activities of ZG cells. Preincubation with 10 −5 M tyrphostin-23 blocked the ghrelin-induced stimulation of both TK and MAPK p42/p44, while preincubation with 10 −4 M PD-98059 only annulled MAPK p42/p44 stimulation. Collectively, our findings allow us to conclude that ghrelin, acting via GHS-Rs exclusively located in the ZG, enhances the growth of human adrenal cortex, through a mechanism involving the activation of the TK-dependent MAPK p42/p44 cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.