Abstract

Recent studies demonstrate widespread expression of ghrelin among tissues and have uncovered its pleiotropic nature. We have examined gene expression of ghrelin and its two receptor splice variants, growth hormone secretagogue receptors (GHS-R) 1a and 1b, in human bone biopsies and in the human pre-osteoblastic SV-HFO cell line during differentiation. Additionally, we examined proliferative effects of ghrelin and unacylated ghrelin (UAG) in differentiating and non-differentiating cells. We detected GHS-R1b mRNA in human bone and osteoblasts but not ghrelin's cognate receptor GHS-R1a, using two different real-time PCR assays and both total RNA and mRNA. In osteoblasts GHS-R1b mRNA expression remained low during the first 14 days of culture, but increased 300% in differentiating cells by day 21. Both human bone biopsies and osteoblasts expressed ghrelin mRNA, and osteoblasts were found to secrete ghrelin. Overall, ghrelin gene expression was greater in differentiating than non-differentiating osteoblasts, but was not increased during culture in either group. Ghrelin and UAG induced thymidine uptake dose-dependently, peaking at 1 and 10 nM respectively, at day 6 of culture in both non-differentiating and differentiating osteoblasts. The proliferative response to ghrelin and UAG declined with culture time and state of differentiation. The proliferative effects of ghrelin and UAG were suppressed by inhibitors of extracellular-signal-regulated kinase (ERK) and phosphoinositide-3 kinase, and both peptides rapidly induced ERK phosphorylation. Overall, our data suggest new roles for ghrelin and UAG in modulating human osteoblast proliferation via a novel signal transduction pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.