Abstract

ABSTRACT Stellar haloes observed around normal galaxies are extended and faint stellar structures formed by debris of tidally disrupted dwarf galaxies accreted overtime by the host galaxy. Around dwarf galaxies, these stellar haloes may not exist if all the accreted satellites are dark haloes without stars. However, if a stellar halo is found in sufficiently small mass dwarfs, the whole stellar halo is composed of tidal debris of fossil galaxies, and we refer to it as ghostly halo. Fossil galaxies are so called because they formed most of their stars before the epoch of reionization, and have been identified as the ultrafaint dwarf galaxies found around the Milky Way and M31. In this paper, we carry out semi-analytical simulations to characterize the sizes and stellar masses of ghostly stellar haloes in dwarf galaxies as a function of their dark matter halo mass. By comparing the models to observations of six isolated dwarf galaxies in the Local Group showing evidence of extended stellar haloes, we are able to constrain the star formation efficiency in fossil galaxies. We find that at redshift z ∼ 6, dark matter haloes in the mass range 107–109 M⊙ have a mean star formation efficiency $f_* \equiv M_*/M_{\mathrm{ dm}} \sim 0.1\!-\!0.2\hbox{ per cent}$ nearly constant as a function of the dark matter halo mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call