Abstract

Scene-based adaptive nonuniformity correction (NUC) is currently being applied to achieve higher performance in infrared imaging systems. However, almost all scene-based NUC algorithms cause the production of ghosting artifacts over output images. Based on constant-statistics theory, we propose a novel threshold self-adaptive ghosting reduction algorithm to improve the space low-pass and temporal high-pass (SLPTHP) NUC technique. The correction parameters of the previous frame are regarded as thresholds to compute new correction parameters. Experimental results show that the proposed algorithm can obtain a satisfactory performance in reducing unwanted ghosting artifacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.