Abstract

The visual system enables humans to perceive all details of the real-world with vivid colors, while high dynamic range (HDR) technology aims at capturing natural scenes in a closer way to human perception through a large dynamic range of color gamut. Especially for traditional –low dynamic range (LDR)– devices, HDR-like image generation is an attractive research topic. Blending a stack of input LDR exposures is called multi-exposure image fusion (MEF). MEF is indeed a very challenging problem and it is highly prone to halo effects or ghosting and motion blur in the cases when there are spatial discontinuities in between input exposures. To overcome these artifacts, MEF keeps the “best” quality regions of each exposure via a weight characterization scheme. This paper proposes an effective weight map extraction framework which relies on principal component analysis, adaptive well-exposedness and saliency maps. The characterized maps are later refined by a guided filter and a blended output image is obtained via pyramidal decomposition. Comprehensive experiments and comparisons demonstrate that the developed algorithm generates very strong statistical and visual results for both static and dynamic scenes. In addition, the designed method is successfully applied to the visible-infrared image fusion problem without any further optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.