Abstract

We present improved upper and lower bounds for the momentum-space ghost propagator of Yang-Mills theories in terms of the two smallest nonzero eigenvalues (and their corresponding eigenvectors) of the Faddeev-Popov matrix. These results are verified using data from four-dimensional numerical simulations of SU(2) lattice gauge theory in minimal Landau gauge at beta = 2.2, for lattice sides N = 16, 32, 48 and 64. Gribov-copy effects are discussed by considering four different sets of numerical minima. We then present a lower bound for the smallest nonzero eigenvalue of the Faddeev-Popov matrix in terms of the smallest nonzero momentum on the lattice and of a parameter characterizing the geometry of the first Gribov region $\Omega$. This allows a simple and intuitive description of the infinite-volume limit in the ghost sector. In particular, we show how nonperturbative effects may be quantified by the rate at which typical thermalized and gauge-fixed configurations approach the boundary of Omega, known as the first Gribov horizon. As a result, a simple and concrete explanation emerges for why lattice studies do not observe an enhanced ghost propagator in the deep infrared limit. Most of the simulations have been performed on the Blue Gene/P--IBM supercomputer shared by Rice University and S\~ao Paulo University.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.