Abstract

High dynamic range (HDR) imaging is to reconstruct high-quality images with a broad range of illuminations from a set of differently exposed images. Some existing algorithms align the input images before merging them into an HDR image, but artifacts of the registration appear due to misalignment. Recent works try to remove the ghosts by detecting motion region or skipping the registered process, however, the result still suffers from ghost artifacts for scenes with significant motions. In this paper, we propose a novel Multi-scale Channel Attention guided Network (MCANet) to address the ghosting problem. We use multi-scale blocks consisting of dilated convolution layers to extract informative features. The channel attention blocks suppress undesired components and guide the network to refine features to make full use of feature maps. The proposed MCANet recovers the occluded or saturated details and reduces artifacts due to misalignment. Experiments show that the proposed MCANet can achieve state-of-the-art quantitative and qualitative results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.