Abstract

Abstract The origin of mammals has been characterized as a gradual process, a claim based primarily on a well-preserved series of extinct nonmammalian synapsids (“mammal-like reptiles”) that span some 200 million years. In contrast to the origin of many other higher taxa, the origin of mammals from within cynodont-grade therapsids is not considered to coincide with a major morphological change, but rather to be simply the culmination of a series of more and more mammal-like transitional forms. To test these assertions, an asymmetrical cladogram extending from primitive “pelycosaurs” to morganucodontid mammaliaforms was created. Three different methodologies were then used to compare the amount of morphological change between nodes on this cladogram with the minimum missing time interval between each node, as inferred from sister taxon-based ghost lineages. In general, a statistically significant positive relationship was found, indicating that greater numbers of derived features tend to be correlated with longer ghost lineages. A significant correlation between the number of accumulated apomorphies and branching events was also found. Although the rate of character change was variable, in no case was a long ghost lineage associated with few apomorphies. These correlations are consistent with the hypothesis that rapid accumulation of derived features occurred relatively infrequently within the synapsid lineage leading toward mammals and that gradual character evolution predominated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call