Abstract

Ghost imaging (correlated imaging) has been extensively investigated in recent years, both theoretically and experimentally. By using the second-order or high-order coherence properties of light field and the correlation measurement, ghost imaging was realized with quantum entangled light, pseudo-thermal light and even true thermal light. In this work, basing on the theory of statistical optics, we model the dynamic process of thermal variation, and obtain the ghost interference and ghost imaging by means of simulated calculation. In the later experiment, a pseudo-thermal source is firstly prepared by using a laser beam to pass through a rotating ground glass plate, and the parameters of the pseudo-thermal source are obtained via Hanbury-Brown-Twiss (HBT) experiment. With the pseudo-thermal light, we perform ghost interference. The experimental results demonstrate the accordance of numerical prediction. And our conclusion shows that the quality of ghost interference is influenced by the size of the pinhole in the reference path, the little pinhole due to a higher quality of ghost interference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call