Abstract
Corm dormancy is an important trait for breeding in many bulb flowers, including the most cultivated Gladiolus hybridus. Gladiolus corms are modified underground stems that function as storage organs and remain dormant to survive adverse environmental conditions. Unlike seed dormancy, not much is known about corm dormancy. Here, we characterize the mechanism of corm dormancy release (CDR) in Gladiolus. We identified an important ABA (abscisic acid) signaling regulator, GhPP2C1 (protein phosphatase 2C1), by transcriptome analysis of CDR. GhPP2C1 expression increased during CDR, and silencing of GhPP2C1 expression in dormant cormels delayed CDR. Furthermore, we show that GhPP2C1 expression is directly regulated by GhNAC83, which was identified by yeast one-hybrid library screening. In planta assays show that GhNAC83 is a negative regulator of GhPP2C1, and silencing of GhNAC83 promoted CDR. As expected, silencing of GhNAC83 decreased the ABA level, but also dramatically increased cytokinin (CK; zeatin) content in cormels. Binding assays demonstrate that GhNAC83 associates with the GhIPT (ISOPENTENYLTRANSFERASE) promoter and negatively regulates zeatin biosynthesis. Taken together, our results reveal that GhNAC83 promotes ABA signaling and synthesis, and inhibits CK biosynthesis pathways, thereby inhibiting CDR. These findings demonstrate that GhNAC83 regulates the ABA and CK pathways, and therefore controls corm dormancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.