Abstract

A genetically modified recombinant gH625-c-prune was prepared through conjugation of c-prune with gH625, a peptide encompassing 625–644 residues of the glycoprotein H of herpes simplex virus 1, which has been proved to possess the ability to carry cargo molecules across cell membranes. C-prune is the C-terminal domain of h-prune, overexpressed in breast, colorectal, and gastric cancers, interacting with multiple partners, and representing an ideal target for inhibition of cancer development. Its C-terminal domain results in an intrinsically disordered domain (IDD), and the peculiar properties of gH625 render it an optimal candidate to act as a carrier for this net negatively charged molecule by comparison with the positively charged TAT. A characterization of the recombinant gH625-c-prune fusion protein was conducted by biochemical, cellular biology and confocal microscopy means in comparison with TAT-c-prune. The results showed that the gH625-c-prune exhibited the ability to cross biomembranes, opening a new scenario on the use of gH625 as a novel multifunctional carrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.