Abstract
Let $G$ be a Lie group and $G\to\Aut(G)$ be the canonical group homomorphism induced by the adjoint action of a group on itself. We give an explicit description of a 1-1 correspondence between Morita equivalence classes of, on the one hand, principal 2-group $[G\to\Aut(G)]$-bundles over Lie groupoids and, on the other hand, $G$-extensions of Lie groupoids (i.e.\ between principal $[G\to\Aut(G)]$-bundles over differentiable stacks and $G$-gerbes over differentiable stacks). This approach also allows us to identify $G$-bound gerbes and $[Z(G)\to 1]$-group bundles over differentiable stacks, where $Z(G)$ is the center of $G$. We also introduce universal characteristic classes for 2-group bundles. For groupoid central $G$-extensions, we introduce Dixmier--Douady classes that can be computed from connection-type data generalizing the ones for bundle gerbes. We prove that these classes coincide with universal characteristic classes. As a corollary, we obtain further that Dixmier--Douady classes are integral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.