Abstract

NF-κB activation is essential in mediating the induction of pro-inflammatory cytokines and also plays a key role in regulating the inflammatory response through intricate mechanisms. In this study, loss of Gfi1 was found to be associated with transcriptomic profiles related to NF-κB activation, including an increase in pro-inflammatory cytokines. Genetically inactivating the IKK/NF-κB signaling pathway in macrophages showed that Gfi1 deficiency led to pro-inflammatory cytokine production requiring NF-κB activation. More importantly, we revealed that one of the under-researched mechanisms, involving Gfi1 and Zc3h12c exerted negative regulation on NF-κB activation. Both Gfi1 and Zc3h12c were found to inhibit NF-κB activation, and double knockout exhibited additive roles of Gfi1 and Zc3h12c in preventing proinflammatory cytokine production. The loss of Gfi1 upregulated Zc3h12c which in turn inhibited NF-κB activation. Therefore, this study delineates the function of Zc3h12c in enhancing the negative regulation of Gfi1 through NF-κB activation during inflammation in macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.