Abstract

Lineage-specific Gfh factors from the radioresistant bacterium Deinococcus radiodurans, which bind within the secondary channel of RNA polymerase, stimulate transcriptional pausing at a wide range of pause signals (elemental, hairpin-dependent, post-translocated, backtracking-dependent, and consensus pauses) and increase intrinsic termination. Universal bacterial factor NusA, which binds near the RNA exit channel, enhances the effects of Gfh factors on termination and hairpin-dependent pausing but do not act on other pause sites. It is proposed that NusA and Gfh target different steps in the pausing pathway and may act together to regulate transcription under stress conditions. Thus, transcription factors that interact with nascent RNA in the RNA exit channel can communicate with secondary channel regulators to modulate RNA polymerase activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.