Abstract

Vehicles are important targets in the remote sensing applications and nighttime vehicle detection has been a hot study topic in recent years. Vehicles in the visible images at nighttime have inadequate features for object detection. Infrared images retain the contours of vehicles while they lose the color information. Thus, it is valuable to fuse infrared and visible images to improve the vehicle detection performance at nighttime. However, it is still a challenge to design effective fusion models due to the complexity of visible and infrared images. In order to improve vehicle detection performance at nighttime, this paper proposes a fusion model of infrared and visible images with Generative Adversarial Networks (GAN) for vehicle detection named GF-detection. GAN is utilized in the image reconstruction and introduced in the image fusion recently. To be specific, to exploit more features for the fusion, GAN is utilized to fuse the infrared and visible images via the image reconstruction. The generator fuses the image features and detection features, and then generates the reconstructed images for the discriminator to classify. Two branches, visible and infrared branches, are designed in the GF-detection model. Different feature extraction strategies are conducted according to the variance of the visible and infrared images. Detection features and self-attention mechanism are added to the fusion model aiming to build a detection task-driven fusion model of infrared and visible images. Extensive experiments based on nighttime images are conducted to demonstrate the effectiveness of the proposed fusion model in night vehicle detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.