Abstract

In this paper, an efficient digit-serial systolic array is proposed for multiplication in finite field GF() using the polynomial basis representation. The proposed systolic array is based on the most significant digit first (MSD-first) multiplication algorithm and produces multiplication results at a rate of one every "m/D" clock cycles, where D is the selected digit size. Since the inner structure of the proposed multiplier is tree-type, critical path increases logarithmically proportional to D. Therefore, the computation delay of the proposed architecture is significantly less than previously proposed digit-serial systolic multipliers whose critical path increases proportional to D. Furthermore, since the new architecture has the features of a high regularity, modularity, and unidirectional data flow, it is well suited to VLSI implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.