Abstract

1941–2017 period of the Valley of Geysers monitoring (Kamchatka, Kronotsky Reserve) reveals a very dynamic geyser behavior under natural state conditions: significant changes of IBE (interval between eruptions) and power of eruptions, chloride and other chemical components, and preeruption bottom temperature. Nevertheless, the total deep thermal water discharge remains relatively stable; thus all of the changes are caused by redistribution of the thermal discharge due to giant landslide of June 3, 2007, mudflow of Jan. 3, 2014, and other events of geothermal caprock erosion and water injection into the geothermal reservoir. In some cases, water chemistry and isotope data point to local meteoric water influx into the geothermal reservoir and geysers conduits. TOUGHREACT V.3 modeling of Velikan geyser chemical history confirms 20% dilution of deep recharge water and CO2 components after 2014. Temperature logging in geysers Velikan (1994, 2007, 2015, 2016, and 2017) and Bolshoy (2015, 2016, and 2017) conduits shows preeruption temperatures below boiling at corresponding hydrostatic pressure, which means partial pressure of CO2 creates gas-lift upflow conditions in geyser conduits. Velikan geyser IBE history explained in terms of gradual CO2 recharge decline (1941–2013), followed by CO2 recharge significant dilution after the mudflow of Jan. 3, 2014, also reshaped geyser conduit and diminished its power.

Highlights

  • Geysers Valley is a unique site in Kamchatka where magnificent hydrothermal features are expressed in the form of numerous geysers, boiling springs, and mudpots with the total rate of ∼250–300 kg/s of chloride thermal waters discharged in the Geysernaya river, mostly within the area of 1.0 km to 0.2 km along the Geysernaya river downstream basin

  • Velikan geyser conduit was completely filled by clastic rocks and it released significant part of them by 2016, geysers functionality was not recovered in a full

  • This paper aims to analyze cycling (IBE, interval between eruptions), chemistry, and available geysers conduit temperature logging data during the historical period of 1941–2017 to understand issues, which caused geysers functionality change

Read more

Summary

Introduction

Geysers Valley is a unique site in Kamchatka where magnificent hydrothermal features are expressed in the form of numerous geysers, boiling springs, and mudpots with the total rate of ∼250–300 kg/s of chloride thermal waters discharged in the Geysernaya river, mostly within the area of 1.0 km to 0.2 km along the Geysernaya river downstream basin. In spite of a relatively calm period of 1941–2007, when geysers activity changed gradually, two catastrophic events (landslide on June 3, 2007, and clastic mudflow on January 3, 2014) significantly reordered discharge conditions (Figure 1). A number of important geysers were buried by clastic rocks (Pervenets, Troynoy) or sank in Podprudnoe Lake (Maly, Bolshoy, and Conus) after landslide on June 3, 2007. Velikan geyser conduit was completely filled by clastic rocks and it released significant part of them by 2016, geysers functionality was not recovered in a full. This mudflow created Podprudnoe Lake 2 upstream of the Geysernaya river, which might recharge cold water in geyser hydrothermal system. This paper aims to analyze cycling (IBE, interval between eruptions), chemistry, and available geysers conduit temperature logging data during the historical period of 1941–2017 to understand issues, which caused geysers functionality change

Geological and Structural Setting of the Study Area
Available Data and Methodology
Chemical History of Geysers Activity in 1969–2016
Temperature Measurements in Velikan and Bolshoy Geysers Conduits
Findings
Thermal-Hydrodynamic-Chemical Modeling of Velikan Geyser
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.