Abstract

We calculate the GeV afterglow emission expected from a few mechanisms related to gamma-ray bursts (GRBs) and their afterglows. Given the brightness of the early X-ray afterglow emission measured by Swift/X-Ray Telescope, Gamma-ray Large Area Space Telescope (GLAST)/Large Area Telescope (LAT) should detect the self-Compton emission from the forward shock driven by the GRB ejecta into the circumburst medium. Novel features discovered by Swift in X-ray afterglows (plateaus and chromatic light-curve breaks) indicate the existence of a pair-enriched, relativistic outflow located behind the forward shock. Bulk and inverse-Compton upscattering of the prompt GRB emission by such outflows provide another source of GeV afterglow emission detectable by LAT. The large-angle burst emission and synchrotron forward-shock emission are, most likely, too dim at high photon energy to be observed by LAT. The spectral slope of the high-energy afterglow emission and its decay rate (if it can be measured) allow the identification of the mechanism producing the GeV transient emission following GRBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.