Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. Atherosclerosis is directly associated with CVD and is characterized by slow progressing inflammation which results in the deposition and accumulation of lipids beneath the endothelial layer in conductance and resistance arteries. Both chronic inflammation and disease progression have been associated with several risk factors, including but not limited to smoking, obesity, diabetes, genetic predisposition, hyperlipidemia, and hypertension. Currently, despite increasing incidence and significant expense on the healthcare system in both western and developing countries, there is no curative therapy for atherosclerosis. Instead patients rely on surgical intervention to avoid or revert vessel occlusion, and pharmacological management of the aforementioned risk factors. However, neither of these approaches completely resolve the underlying inflammatory environment which perpetuates the disease, nor do they result in plaque regression. As such, immunomodulation could provide a novel therapeutic option for atherosclerosis; shifting the balance from proatherogenic to athero-protective. Indeed, regulatory T-cells (Tregs), which constitute 5-10% of all CD4+ T lymphocytes in the peripheral blood, have been shown to be athero-protective and could function as new targets in both CVD and atherosclerosis. This review aims to give a comprehensive overview about the roles of Tregs in CVD, focusing on atherosclerosis.
Highlights
According to the World Health Organization [https://www.who.int/news-room/fact-sheets/ detail/cardiovascular-diseases-(cvds)], cardiovascular diseases (CVD) are a group of disorders affecting the heart and blood vessels; which include coronary heart disease, angina, myocardial infarction, congenital heart diseases, hypertension, stroke, heart valve diseases, cardiomyopathy, and vascular dementia.The Heart of the MatterAtherosclerosis is a common cause of CVD and is characterized by slow progressing inflammation in conductance and resistance arteries, in which there is an accumulation of cholesterol-containing low-density lipoprotein (LDL) particles beneath the endothelial layer [1]
Tregs can be sub-divided into two main classes depending on their developmental origin: thymic Tregs and peripherally induced Tregs. tTregs develop in the thymus, an environment where tTregs with a high affinity for self-antigens are positively selected for maturation [29]
Tregs from ApoE−/− mice we shown to have decreased in vitro suppressive ability [6]
Summary
According to the World Health Organization [https://www.who.int/news-room/fact-sheets/ detail/cardiovascular-diseases-(cvds)], cardiovascular diseases (CVD) are a group of disorders affecting the heart and blood vessels; which include coronary heart disease (ischemic heart disease), angina, myocardial infarction, congenital heart diseases (e.g., tetralogy of Fallot, ductus arteriosus, transposition of great vessels, tricuspid atresia), hypertension, stroke (e.g., ischemic or hemorrhagic), heart valve diseases (e.g., regurgitation or stenosis), cardiomyopathy (e.g., heart failure with dilated or hypertrophic cardiomyopathy or with preserved ejection fraction), and vascular dementia
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.