Abstract

Executive Function (EF) refers to important socio-emotional and cognitive skills that are known to be highly correlated with both academic and life success. EF is a blanket term that is considered to include self-regulation, working memory, and planning. Recent studies have shown a relationship between EF and motor control. The emergence of motor control coincides with that of EF, hence understanding the relationship between these two domains could have significant implications for early detection and remediation of later EF deficits. The purpose of the current study was to investigate this relationship in young children. This study incorporated the Behavioral Rating Inventory of Executive Function (BRIEF) and two motor assessments with a focus on precision grasping to test this hypothesis. The BRIEF is comprised of two indices of EF: (1) the Behavioral Regulation Index (BRI) containing three subscales: Inhibit, Shift, and Emotional Control; (2) the Metacognition Index (MI) containing five subscales: Initiate, Working Memory, Plan/Organize, Organization of Materials, and Monitor. A global executive composite (GEC) is derived from the two indices. In this study, right-handed children aged 5–6 and 9–10 were asked to: grasp-to-construct (Lego® models); and grasp-to-place (wooden blocks), while their parents completed the BRIEF questionnaire. Analysis of results indicated significant correlations between the strength of right hand preference for grasping and numerous elements of the BRIEF including the BRI, MI, and GEC. Specifically, the more the right hand was used for grasping the better the EF ratings. In addition, patterns of space-use correlated with the GEC in several subscales of the BRIEF. Finally and remarkably, the results also showed a reciprocal relationship between hand and space use for grasping and EF. These findings are discussed with respect to: (1) the developmental overlap of motor and executive functions; (2) detection of EF deficits through tasks that measure lateralization of hand and space use; and (3) the possibility of using motor interventions to remediate EF deficits.

Highlights

  • Neuropsychological evidence has highlighted the role of the frontal cortex in the planning and execution of behavior (Kolb and Whishaw, 2009)

  • The results showed no relationship between executive function (EF) and their performance as measured by time

  • How quickly a child completed the tasks bore no relationship to their scores on the Behavioral Rating Inventory of Executive Function (BRIEF)

Read more

Summary

Introduction

Neuropsychological evidence has highlighted the role of the frontal cortex in the planning and execution of behavior (Kolb and Whishaw, 2009). Patients with frontal lobe injury present with a host of motor and cognitive disturbances. Frontal lobe injury could lead to deficits in gross motor function (e.g., impaired posture and gait) and/or fine motor control (e.g., impaired reaching and grasping). In the cognitive domain some of the most commonly disrupted functions include: initiation, planning, purposive action, self-monitoring, self-regulation, and volition (Stuss, 2011). This has led to the understanding that the frontal lobe is the area that supports executive function (EF). EF is a blanket term that is considered to include attentional control, self-regulation, inhibition, working memory, goal setting, planning, problem solving, mental flexibility, and abstract reasoning (Diamond and Lee, 2011)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call