Abstract
Traditional approaches to travel behaviour modelling primarily rely on household travel survey data, which is expensive to collect, resulting in small sample sizes and infrequent updates. Furthermore, such data is prone to reporting errors which can lead to biased parameter estimates and subsequently incorrect predictions. On the other hand, mobile phone call detail records (CDRs), which report the timestamped locations of mobile communication events, have been successfully used in the context of generating travel patterns. However, due to their anonymous nature, such records have not been widely used in developing mathematical models establishing the relationship between the observed travel behaviour and influencing factors such as the attributes of the alternatives and the decision makers. In this paper, we propose a joint modelling framework that utilises the advantages offered by both travel survey data and low-cost CDR data to optimise the prediction capacity of traditional trip generation models. In this regard, we develop a model that jointly explains the reported trips for each individual in the household survey data and ensures that the aggregated zonal trip productions are close to those derived from CDR data. This framework is tested using data from Dhaka. Bangladesh consisting of household survey data (65,419 persons in 16,750 households), mobile phone CDR data (over 600 million records generated by 6.9 million users), and aggregate census data. The model results show that the proposed framework improves the spatial and temporal transferability of the joint models over the base model which relies on household travel survey data alone. This serves as a proof-of-concept that augmenting travel survey data with mobile phone data holds significant promise for the travel behaviour modelling community, not only by saving the cost of data collection, but also improving the prediction capability of the models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.