Abstract China has been building approximately 1 GW of new coal-fired power plant per week since 2005. Power plants now in construction may continue to operate until 2040. “CCS (Carbon Capture and Storage) Ready” enables and eases the subsequent retrofitting of a plant to be able to capture carbon dioxide later in that plant’s lifetime. Building on the definitions of the IEA GHG (IEA Greenhouse Gas Programme) and GCCSI (Global Carbon Capture and Storage Institute), this study suggests a novel concept ‘CCS Ready Hub’ for implementing CCS Ready. A CCS Ready Hub not only includes a number of new coal-fired power plants but also integrates other existing stationary carbon dioxide emissions sources into the planning for potential infrastructure. We conducted a case study of Guangdong province in China with a detailed engineering and economic assessment in Shenzhen City. The study first reviewed the potential storage sites and analysed the existing stationary emissions sources in Guangdong using a GIS (Geographic Information System) approach. Thereafter, we focused on investigating the economic benefits of a ‘CCS Ready Hub’ at a potential 4 GW new USCPC (ultra-supercritical pulverised coal-fired) power plant in Shenzhen. Using the cost of carbon dioxide avoidance in 2020 as a criterion, we found that the concept of a CCS Ready Hub to finance CCS Ready at a regional planning level rather than at an individual plant is preferred since it significantly reduces the overall cost of building an integrated CCS system to reduce carbon emissions in the future.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call