Abstract

High-volume production data shows that dies, which failed probe test on a semiconductor wafer, have a tendency to form certain unique patterns, i.e., defect clusters. Identifying such clusters is one of the crucial steps toward improvement of the fabrication process and design for manufacturing. This paper proposes a new technique for defect-cluster identification that combines data mining with a defect-cluster extraction using a Segmentation, Detection, and Cluster-Extraction algorithm. It offers high defect-extraction accuracy, without any significant increase in test time and cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.