Abstract

Pesticide mixtures are commonly used by greenhouse producers to deal with the array of arthropod (insect and mite) pests encountered in greenhouses. Greenhouse producers tank mix pesticides due to convenience because it is less time consuming, costly, and labor intensive to mix together two or more pesticides into a single spray solution and then perform one spray application compared with making multiple applications. Pesticide mixtures may also result in improved arthropod pest control. However, there has been no quantitative assessment to determine what pesticide mixtures (two-, three-, and four-way combinations) are being adopted by greenhouse producers and why. As such, a survey was conducted by distributing evaluation forms in conjunction with three sessions at two greenhouse producer conferences (two in 2007 and one in 2008) to obtain data on the types of pesticide mixtures used by greenhouse producers and determine if there are any problems associated with these pesticide mixtures. The evaluation form requested that participants provide information on the four most common pesticide mixtures (insecticides and/or miticides) used and for what specific arthropod pests. The response rate of the evaluation forms was 22.5% (45/200). The two-way pesticide mixture that was cited most often (n = 8) was the abamectin (Avid) and bifenthrin (Talstar) combination. The two pesticides typically included in a majority of the two-way and three-way mixtures were spinosad (Conserve) and abamectin. Spinosad was a component of 17 two-way and 7 three-way combinations, while abamectin was cited in 15 two-way and 9 three-way combinations. Both products are labeled for control of the western flower thrips (Frankliniella occidentalis), which is one of the most important insect pests in greenhouses. One pesticide mixture that was difficult to interpret involved the fungicides, thiophanate-methyl (Cleary's 3336) and metalaxyl (Subdue). This mixture was cited twice, and the arthropod pest listed was thrips (Thysanoptera). However, both fungicides have no insecticidal activity. Two of the mixtures listed in the survey used pesticides with similar modes of action: acephate (Orthene) + methiocarb (Mesurol), and pyrethrins (Pyreth-It) + bifenthrin (Talstar). A number of the pesticide mixtures listed for spider mites (Tetranychidae) were questionable due to similar life stage activity of the a.i. as indicated on the label including fenpyroximate (Akari) + clofentezine (Ovation), abamectin + chlorfenapyr (Pylon), and bifenazate (Floramite) + etoxazole (TetraSan). In fact, 38% of pesticide mixtures cited for twospotted spider mite (Tetranychus urticae) control should have been avoided due to analogous life stage activity. The data obtained from the survey clearly demonstrates that greenhouse producers implement a wide-range of pesticide mixtures to deal with the multitude of arthropod pests in greenhouses. However, the basis by which greenhouse producers decide the types of pesticides to mix together is not known. As such, the survey data can be used to direct future multistate or multiregional extension (outreach) efforts in developing programs specifically designed to educate greenhouse producers on which pesticides should and should not be mixed together.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call