Abstract

A novel synthesized water-soluble variant of lipid II (LII) was used to evaluate the noncovalent interactions between a number of glycopeptide antibiotics and their receptor by bioaffinity electrospray ionization mass spectrometry (ESI-MS). The water-soluble variant of lipid II is an improved design, compared to the traditionally used tripeptide N,N'-diacetyl-L-lysyl-D-alanyl-D-alanine (KAA), of the target molecule on the bacterial cell wall. A representative group of glycopeptide antibiotics was selected for this study to evaluate the validity of the novel cell-wall-mimicking target LII. Structure-function relationships of various glycopeptide antibiotics were investigated by means of 1) bioaffinity mass spectrometry to evaluate solution-phase molecular interactions with both LII and KAA, 2) fluorescence leakage experiments to study the interactions with the membrane-embedded lipid II, and 3) minimum inhibitory concentrations against the indicator strain Micrococcus flavus. Our results with the novel LII molecule reveal that some antibiotics interact differently with KAA and LII. Additionally, our data cast doubt on the hypothesis that antibiotic selfdimerization assists in the in-vivo efficacy. Finally, the water-soluble lipid II proved to be a better model of the bacterial cell wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call