Abstract

AbstractSilicon samples were implanted with He ions at 1.6 MeV using doses ranging from 1×1016 cm-2 to 1×1017cm-2 with different fluxes (0.4νA/cm2 - 2.0νA/cm2) and annealed at high (1000°C) and low temperatures (800°C). The implantation induced-defect structure and their distribution in the depth of the sample were studied by cross section electron microscopy (XTEM). An unexpected consequence of the flux on the defect population and density was found solely for 2×1016 cm-2, which is the upper threshold to get nano-bubbles at such large implantation depth. Nuclear Reaction Analysis (NRA) were performed to measure the ratio of He remaining in the bubbles as a function of time and temperature anneal. Some samples were gold or nickel diffused at temperatures ranging from 870°C to 1050°C prior to He implantation. The gettering efficiency of the implantation-induced defects was measured by secondary ion mass spectroscopy (SIMS), after a high temperature getter annealing. SIMS profiles exhibit a shape and a width closely related to the presence of the defects (observed by XTEM) which are very efficient sinks for all kinds of metal impurities. The bubbles were found to be more efficient traps than the dislocation loops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.