Abstract

Background: Physical activity closely relates to cognition and brain structure as we age. However, the neural mechanisms underlying this relationship in humans remain less clear. Functional connectivity (FC), measured by task-free functional MRI (tf-fMRI) is a dynamic marker of network activity and may be a sensitive indicator of the brain’s response to exercise over time. We aimed to test the longitudinal relationship between physical activity and FC trajectories in functionally normal older adults.Methods: Two hundred and twelve functionally normal, longitudinally-followed older adults completed the Physical Activity Scale for the Elderly (PASE) and tf-fMRI scans at each visit [mean = 1.5 visits (range:1–3)]. We studied FC of the default mode network (DMN), frontal-parietal (FP), subcortical networks (SubCort), and frontal-subcortical inter-network connectivity (FS), given that previous studies implicate these regions in age-related changes. Linear mixed-effects models examined the relationship between within-person changes in PASE and FC (in SD units), covarying for age, sex, education and systemic cardiovascular risk factors (heart rate, BMI and systolic blood pressure). We additionally examined models covarying for DTI fractional anisotropy (FA) and mean diffusivity (MD) of tracts underlying networks of interest, as a marker of cerebrovascular disease. Furthermore, we examined the longitudinal relationship between PASE and neuropsychological trajectories.Results: In our first model, within-subject increases in physical activity tracked with increasing SubCort (β = 0.33, p = 0.007) and FS inter-network (β = 0.27, p = 0.03) synchrony, while between-subject parameters did not reach significance (β = −0.042 to −0.07, ps > 0.37). No significant longitudinal associations were observed between PASE and DMN (β = −0.02 p = 0.89) or FP networks (β = 0.15, p = 0.23). Adjusting for markers of cerebrovascular health (FA/MD) did not change estimated effects (SubCort: β = 0.31, p = 0.01, FS inter-network: β = 0.28, p = 0.03). Associations between changes in physical activity and neuropsychological trajectories were small (β = −0.14 to 0.002) and did not reach statistical significance (p-values >0.42).Conclusions: Our findings suggest that changes in exercise over time are specifically associated with frontal-subcortical processes in older adults. This relationship appears to be independent of cardio- or cerebrovascular disease, possibly driven by a more direct neural response to exercise.

Highlights

  • Cognitive decline is a public health issue of global proportions, as rates of dementia are rapidly increasing around the world

  • Our findings suggest that it may be worthwhile for clinicians to encourage even incremental increases in physical activity, to benefit brain network functioning

  • This may be of particular importance to individuals manifesting symptoms involving the frontalsubcortical networks that we identified as related to physical activity, such as cerebrovascular or Parkinson’s disease (Zhu et al, 2019)

Read more

Summary

Introduction

Cognitive decline is a public health issue of global proportions, as rates of dementia are rapidly increasing around the world. It is increasingly important to identify protective factors of cognitive aging decline, so that empirically-based primary and secondary prevention strategies can be developed. Physical activity has been identified as one of the most potent modifiable lifestyle factors to be associated with brain health in aging. Randomized controlled studies make a case for a causal relationship between physical activity and cognition (Erickson et al, 2011), encouraging the implementation of exercise-related intervention strategies across the life span. This is especially appealing because there are countless ways to move, and being active does not necessarily require special equipment, social support, or financial assets. We aimed to test the longitudinal relationship between physical activity and FC trajectories in functionally normal older adults

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.