Abstract
SummaryFor the problem of surface electromyography (sEMG) gesture recognition, considering the fact that the traditional machine learning model is susceptible to the sEMG feature extraction method, it is difficult to distinguish the subtle differences between similar gestures. The NinaPro DB1 dataset is used as the research object, and the sEMG feature image and the Convolutional Neural Network (CNN) are combined to recognize 52 gesture movements. The CNN model effectively solves the limitations of traditional machine learning in sEMG gesture recognition, and combines 1‐dim convolution kernel to extract deep abstract features to improve the recognition effect. Finally, the simulation experiment shows that compared with the accuracy of the raw‐sEMG images based on the CNN and the sEMG‐feature‐images based on the CNN and sEMG based on the traditional machine learning, the multi‐sEMG‐features image based on the CNN is the highest, which coming up to 82.54%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.