Abstract
The actions of humans executed by their hands play a remarkable part in controlling and handling variety of objects in their daily life activities. The effect of losing or degradation in the functioning of one hand has a greater influence in bringing down the regular activity. Hence the design of prosthetic hands which assists the individuals to enhance their regular activity seems a better remedy in this new era. This paper puts forward a classification framework using machine learning algorithms for classifying hand gesture signals. The surface electromyography (sEMG) dataset acquired for 9 wrist movements of publicly available database are utilized to identify the potential biomarkers for classification and in evaluating the efficacy of the proposed algorithm. The statistical and time domain features of the sEMG signals from 27 intact subjects and 11 trans-radial amputated subjects are extracted and the optimal features are determined implementing the feature selection approach based on correlation factor. The classifiers performance of machine learning algorithms namely support vector machine (SVM), Naïve bayes (NB) and Ensemble classifier are evaluated. The experimental results highlight that the SVM classifier can yield the maximum accuracy movement classification of 99.6% for intact and 97.56% for trans-amputee subjects. The proposed approach offers better accuracy and sensitivity compared to other approaches that have used the sEMG dataset for movement classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.