Abstract

Hyperglycemia and compromised β-cell development were demonstrated in neonatal rats programmed with a gestational high-fat diet. The aim of this study was to determine whether these changes were attributed to impaired insulin release and altered immunoreactivity of Pdx-1, glucokinase (GK), and glucose transporter (GLUT)–2 in high-fat–programmed neonates. Fetuses were maintained, via maternal nutrition, on either a standard laboratory diet (control) or a high-fat diet throughout gestation (HFG). Pancreata from 1-day–old neonates were excised for islet isolation and the subsequent measurement of insulin release at 2.8, 6.5, 13, and 22 mmol/L glucose. Other pancreata were either snap frozen for quantitative polymerase chain reaction or formalin fixed for immunohistochemistry followed by image analysis. The HFG neonates had reduced insulin release at 13- and 22-mmol/L glucose concentrations. No significant differences were found in Pdx-1, GK, or GLUT-2 messenger RNA expression. In HFG neonates, immunoreactivity of both Pdx-1 and GK was significantly reduced, with a nonsignificant reduction in GLUT-2. Gestational high-fat programming impairs insulin release and reduces Pdx-1 and GK immunoreactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call