Abstract

In areas where soils are deficient in Selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Because Se status affects testosterone synthesis and frequency of sperm abnormalities, and the form of Se supplemented to cows affects tissue-specific gene expression, the objective of this study was to determine whether the form of Se consumed by cows during gestation would affect the expression of mRNAs that regulate steroidogenesis and/or spermatogenesis in the neonatal calf testis. Twenty-four predominantly Angus cows were assigned randomly to have individual, ad libitum, access of a mineral mix containing 35ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX), starting 4months prior to breeding and continuing throughout gestation. Thirteen male calves were born over a 3-month period (ISe, n = 5; OSe, n = 4; MIX, n = 4), castrated within 2days of birth, and extracted testis RNA subjected to transcriptomal analysis by microarray (Affymetrix Bovine 1.0 ST arrays) and targeted gene expression analysis by real-time reverse-transcription PCR (RT-PCR) of mRNAs encoding proteins known to affect steroidogenesis and/or spermatogenesis. The form of dam Se affected (P < 0.05) the expression of 853 annotated genes, including 17 mRNAs putatively regulating steroidogenesis and/or spermatogenesis. Targeted RT-PCR analysis indicated that the expression of mRNA encoding proteins CYP2S1 (cytochrome P450, family 2, subfamily S, polypeptide 1), HSD17B7 (hydroxysteroid (17β) dehydrogenase 7), SULT1E1 (sulfotransferase family 1E, estrogen preferring, member 1), LDHA (lactate dehydrogenase A), CDK5R1 (cyclin-dependent kinase 5, regulatory subunit 1), and LEP (leptin) was affected (P < 0.05) by form of Se consumed by dams of developing bull calves, while AKR1C4 (aldo-keto reductase family 1, member C4) and CCND2 (cyclin D2) tended (P < 0.09) to be affected. Our results indicate that form of Se fed to dams during gestation affected the transcriptome of the neonatal calf testis. If these profiles are maintained throughout maturation, then the form of Se fed to dams may impact bull fertility and the development of Se form-dependent mineral mixes that target gestational development of the testis are warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.