Abstract
A growing body of evidence has shown that gestational exposure to environmental factors such as imbalanced diet, environmental chemicals, and stress can lead to late-onset health effects in offspring and that some of these effects are heritable by the next generation and subsequent generations. Furthermore, altered epigenetic modifications in DNA methylation, histone modifications and small RNAs in a single sperm genome have been shown to transmit disease phenotypes acquired from the environment to later generations. Recently, our group found that gestational exposure of F0 pregnant dams to an inorganic arsenic, sodium arsenite, increases the incidence of hepatic tumors in male F2 mice, and the effects are paternally transmitted to the F2. Here, we first overview the epigenetic changes involved in paternal intergenerational and transgenerational inheritance caused by exposure to environmental factors. Then, we discuss our recent studies regarding paternal inheritance of the tumor-augmenting effects in F2 mice by gestational arsenite exposure, in which we investigated alterations of DNA methylation status in F2 tumors and causative F1 sperm. We also discuss the possible targets of the F2 effects. Finally, we discuss future perspectives on the studies that are needed to fully understand the health effects of arsenic exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.