Abstract

The corpus luteum, a temporally established endocrine gland, formed on the ovary from remaining cells of the ovulated follicle, plays a key role in maintaining the early mammalian pregnancy by secreting progesterone. Despite being a monovular species, 2-12 corpora lutea (CLs) were found on the elephant ovaries during their long pregnancy lasting on average 640 days. However, the function and the formation of the additional CLs and their meaning remain unexplained. Here, we show from the example of the elephant, the close relationship between the maternally determined luteal phase length, the formation of multiple luteal structures and their progestagen secretion, the timespan of early embryonic development until implantation and maternal recognition. Through three-dimensional and Colour Flow ultrasonography of the ovaries and the uterus, we conclude that pregnant elephants maintain active CL throughout gestation that appear as main source of progestagens. Two LH peaks during the follicular phase ensure the development of a set of 5.4 ± 2.7 CLs. Accessory CLs (acCLs) form prior to ovulation after the first luteinizing hormone (LH) peak, while the ovulatory CL (ovCL) forms after the second LH peak. After five to six weeks (the normal luteal phase lifespan), all existing CLs begin to regress. However, they resume growing as soon as an embryo becomes ultrasonographically apparent on day 49 ± 2. After this time, all pregnancy CLs grow significantly larger than in a non-conceptive luteal phase and are maintained until after parturition. The long luteal phase is congruent with a slow early embryonic development and luteal rescue only starts 'last minute', with presumed implantation of the embryo. Our findings demonstrate a highly successful reproductive solution, different from currently described mammalian models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.