Abstract

GeSn alloys are the most promising direct band gap semiconductors to demonstrate full CMOS-compatible laser integration with a manufacturing from Group-IV materials. Since the first demonstration of lasing with GeSn alloys up to 100 K, many researches were devoted to increase the laser operation up to room temperature. We will discuss the band sructure requirements and the practical issues that have to be addressed in order to reach robust gain with increasing temperature. We show that misfit defects managment and strain engineering are key ingredients. For that purpose we developped a GeSn-On-Insulator platform, that combine strain engineering , defective interfacial layer removal and laser resonator designs ad fabrication. Here we show that room temperature lasing, up to 300 K, can be obtained in microdisk resonators fabricated on a GeSnOI layer both with using high Sn-content in the gain medium, e. g. 17% or with applying tensile strain to a layer with lower Sn-content of 14%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.